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J .  P H Y S .  A ( G E N .  P H Y S . ) ,  1969 ,  SER. 2, V O L .  2 .  P R I N T E D  I N  G R E A T  B R I T A I N  

A new proof of superposition of dressed particles 
in plasma kinetic theory 

K. C. SOT and C. H. LIU 
Department of Electrical Engineering, University of Illinois, Urbana, Illinois, 
U.S.A. 
MS. received 23rd August 1968 

Abstract. A new proof of the superposition of dressed particles in plasma kinetic 
theory is given by using the generalized stochastic equation for the conditional 
probability density of one particle given the position in phase space of another 
particle. The conditional probability density of any particle given a spec$ic particle 
is shown to satisfy the Vlasov equation from which a Markov-type integral results. 
The superposition principle is established without the explicit introduction of test 
particles. Relations to Rostoker’s results are discussed. 

1. Introduction 
The  concept of ‘dressed particles’ has been proved to be very useful in many plasma 

problems (Montgomery and Tidman 1964). A ‘dressed particle’, as introduced by Rostoker 
(1961), is a particle which consists of a charge and the associated polarization cloud. 
In many cases, the collective behaviour of a plasma can be considered as a superposition 
of the individual behaviour of a collection of these dressed particles that are assumed to  
be uncorrelated. The  electric field at a point x due to a dressed particle at position x‘ 
with velocity v’ can be written as (Montgomery and Tidman 1964) 

e /dk ik exp{ik . (x- x’)} 
E ( x , X ‘ )  = - 

2n2 K2e+(k, - ik . U’) 
where X’ = (x‘,  v’) is the phase point of the dressed particle and 

. U P  2 dv 
~ + ( h , p ) =  1-1- k .  

k2 av p + i i k . v  

is the dielectric constant of the plasma. fi is the one-body distribution function and wp 
is the plasma frequency. Equation (1) can be used to compute the expectation value of 
the electric field as well as the correlation function for electric field fluctuations in the 
plasma. The  results can then be used to derive the plasma kinetic equation (Montgomery 
and Tidman 1964). The  justification of using such a scheme has been given by Rostoker 
(1964 a, b). He  considers a test-particle problem and, by complicated manipulations, 
relates the results to the superposition principle of dressed particles. 

In  this paper an alternative and simpler proof will be given for this principle. Physically, 
we note that the concept of the polarization cloud about a charge is essentially a statistical 
one, since it involves the collection of other particles that produce this polarization cloud. 
Therefore it is natural to introduce the conditional probability density G(X2, t2iXll tl) 
of having any particle at ( X 2 ,  t2)  given particle 1 at (XI, tl).  With the help of this function, 
the superposition principle can be proved without the explicit introduction of the test 
particle. 

2. Derivation 
Let us consider a fully ionized plasma consisting of electrons moving in a uniform 

background of infinite-mass positive ions. There are iV electrons in a volume V. T h e  
interaction between two particles is through the Coulomb potential + ( I  x i -  x r l ) ,  Both N 
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and V are assumed to approach infinity with the ratio no = N/V being the finite average 
particle number density. In  the following, for the plasma case, l/n, is assumed to be a 
small quantity (Montgomery and Tidman 1964). 

We define the two-particle-two-time probability density Dij(X, t ;  X’ ,  t’) as the joint 
probability density of finding particle i at phase point X (  X, v) at time t and particle j 
at phase point X’( x’, v’) at time t’. Dt i (X ,  tiX’, t’) will denote the conditional probability 
density of finding the ith particle at ( X ,  t )  given that the j th  particle is at (X’, t’). For 
indistinguishable particles the functions D i j  are identical for i # j ;  i , j  = 1, 2, a , . ,  N. 

Let us write * 
P 1 

Dij(X, t ;  X‘, t ’ )dX‘ = :fl(X, t )  
V ( 3 )  

where Di(X, t )  is the one-particle probability density function. In  addition, since the 
particles are indistinguishable, we can write 

1 
V 

where the second term on the right-hand side is the probability density of finding a particle 
at ( X ,  t )  without the influence of the presence of a particle at (X’, t’). The first term is 
the effect due to the presence of this particle at (X’, t’). 

By considering the generalized stochastic equation for this plasma system, and applying 
the cluster expansion, it can be shown that the function g satisfies the following equation 
(So 1967, So and Yeh 1968): 

Dij(X, tiX’, t ’ )  = - {g(X, tlX’, t ’ )+ f l (X ,  t ) } ,  i #  j (4) 

where m is the mass of an electron. 
Since our purpose is to prove the superposition principle, the derivation of (5) will 

not be given here. It is interesting to note that a similar equation for the joint probability 
density is given by Montgomery and Tidman (1964). 

Let us now define the function G(X2, t,]X1, tl) by 

G(X2, fZlX1, tl) = 

- - 

- - 

G(Xz, t21X1, t l )  may be 
particle at (X,, t z )  given 

interpreted as the conditional probability density of having any 
particle 1 at (Xl, tl).  We consider the function 
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In  (7)  we see that, if G is expressed to the accuracy of zero order in l/n,,, we need to know 
D,, to the zero order and g to the first order. T o  the zero order, the particles are 
independent and their trajectories are rectilinear; therefore 

W X 2 ,  t,/Xl, tl) = a($, - $1 - V l ( t 2  - t1))6(v, - v1) (8) 
which satisfies the equation 

g(X2 ,  t,lX,, tl) satisfies (5) to the first order. Substituting (7) ,  (8) and (9) into (5), we 
have 

@(X,, t,lXl,tl) aG(x,,t,lX1, tl) 
+ v , .  

at, 8x2 

Therefore the function G(X,, t2 'X1,  tl) satisfies the Vlasov equation. 

g ( X 2 ,  OIX,, 0) = 0. I is defined as 
Xext, let us consider an integral I under the assumption that the initial correlation 

I(X2, t z ,  XI, t l )  = JG(X2, tzjX, O)G(X, 01x1, t1)dX. (11) 

Ob\-iously this integral satisfies the Vlasov equation (10). At t2 = 0, (11) becomes 

= JS(X2 -X)G(X, 01x1, t l )  d X  

= G(X2 , 0 1 x, , tl> 

(7x2, o/x, 0 )  = al(X2, OIX, O)+g(X,, OIX, 0 )  = 6(Xz-X1). 

(12) 

(13) 

since 

Equation (12) shows that, at t ,  = 0, Iassumestheproper initial condition G(X,, OlX,, t l) .  
Since it also satisfies the equation itself, I must be identical with G(X2 ,  t21X1, tl). There- 
fore we have proved that 

G(X2, t21X1, t l )  = (e(-&, tzlX, O)G(X, OIXl, t l ) d X  (14) 

which is in the form of the conditional probability density of a Markov-like process. 

(Montgomery and Tidman 1964) 
The standard solution of (10) via a Fourier-Laplace transform can be written in the form 

where G(k, v, ,p 'X,  0) is the Fourier-Laplace transform of G(X,, t lX,  0) in X, and t .  
From (13) we have 

G(k,v,,OIX,O) = - exp(- ik .  x)6(v,-vl) .  LA3 
Substituting (16) into (15), we have 

1 1 exp(- ik ,  x) 
( ~ 4 ~  ~ + ( k , p )  p + i k .  v * 

JG(k ,  v ~ , P I X ,  O)dv, = - -- ( l i ;  
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The  large-time behaviour of (17) can be obtained as 

1 1 jcr(k, n2, t lX ,  O)dv, = - exp{-ik. ( x + v t ) ) .  
( 2 7 ~ ) ~  ~ + ( k ,  - ik . v )  

3. Superposition principle 
Consider any observables in the plasma of the form 

h’ 

A(Xf, t )  = a($,, Xi@)) 

B($f, 4 = 2 + f ,  X&))  

i-1 

N 

i- 1 

where U and b are first-order quantities (first order in discreteness parameters e,  m, l/ao, etc.) 
and the subscript f denotes field coordinates. Let us compute the correlation of the two 
observables to the first order: 

Using (14) and the fact that 

equation (20) can be put in the form 

Using (13) and (14) together with the definition in (23), (22) can be written as 

<A($,, t)B(Xf’, t ’ ) )  - (A($,, t ) >  (B(x , ’ ,  t ’ ) )  
= A7JdX dX‘Dll(X,  t ;  X’,  t’) (a1 X, O }  (bl Z’, 0 )  (24) 
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where 

D,,(X, t ;  X’, t‘) = Vfl(X)S(x’- x- v ’ ( t ’ - t ) )8 (v ’ -  v )  

and is the zero-order joint probability density. Other quantities appearing in (24) are 
defined by 

(alg, 0 )  = jacxf, Xl)G(Xl,  tl&, 0)dXl 

(25 ) ( b j r ,  0 )  = [b(xf’, X,)G(X,, t’lx, O)dX,. 

These are the quantities corresponding to the ‘dressed particle’ and (24) is the essential 

As an example, in the problem of Coulomb interactions between particles let us take 
content of the superposition principle. 

a( X ~ ,  X,) and b( x,‘, X,) as the electric field. The interaction force is 

a e - -~ 
Z X f  I xf - xi I * 

Either (22) or (24) can be used for the computation of the flucruation of the electric field. 
For a homogeneous plasma the average values ( A )  and ( B )  in (22) or (24) vanish. 
Making use of the asymptotic time behaviour of JG(k, v2, t /X ,  0) dv, given in (18) and 
the Fourier transform of (i3/axf)(e/l x, - si]), from the convolution theorem of the Fourier 
transform, (22) can be written as 

e exp( ik . xf) exp{ - ik . ( X  + vt ) )  (E(xf, t)E(xf’, t’)) = N f ( v )  - dk ik - - ! :/ 2n2k2 e + ( k ,  - ik . v )  

e exp(ik’ . x,‘) expi- ik’ . (x‘+  v ’ t ’ ) }  

~ + ( k ’ ,  - ik’ , v ’ )  
x i d k ’  ik’= - 

k.k 
7i k4 

(xf‘-xf))exp@(t’-t))- 

X /fl(v)8(p+ik. v)dv 
/ E +  ( k ,  P) l2 

which is the fluctuation of the electric fields in a homogeneous plasma. 
T o  compare our results with Rostoker’s, let us multiply both sides of (14) byf,(X1, tl) 

and make use of the definition of G in (7) and the expression for Dll in (8). It is straight- 
forward to show that 

fl(X1, t1)g(X,, tZlX1, ti) = g(X1, t l lXz ,o ) f l (~ , ,  O)+g(X*, tal2G>o)fdFl> 0 )  
+ ( N -  1)JdX dX’Dll(X, t ;  X’, t’)g(X,, tzlx, O)g(X1, tlIz2’, 0). (27)  

We note that our g(X,, tlZl, 0) corresponds to Rostoker’sP(X,IX,, t )  (Rostoker 1964 b). 
Finally, we point out that the above discussion can be generalized to the case of 

an inhomogeneous plasma. The  main difference in the derivation is that for the 
inhomogeneous case, the zero-order trajectory of the particles is no longer recti- 
linear. Equation (9) becomes 

with the solution 
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where $(t, t o ,  X,) is the solution of the set of equations for the zero-order trajectory 

x = v  
n,ji8(’ x’- X I )  - f l ( X ,  t )  dX -- 
m 2 X ’  

with initial condition $(to,, to ,  X,) = X o .  Equations (14) and (24) can be derived for this 
case after some manipulations. 

4. Conclusion 
In  this paper the superposition principle of ‘dressed particles’ in plasma kinetic theory 

is justified. While our results are closely related to Rostoker’s (1964 a, b), the methods 
of deriyation are quite different. Our starting point is the generalized stochastic equation. 
By introducing the conditional probability density G(X2,  t2 IX1, t l )  of finding any particle 
at ( X 2 ,  t2) given a particle at (Xl, t l ) ,  we are able to derive a Markov-type conditional 
probability density G(X2 ,  t,lXl, t l )  which is found to satisfy the Vlasov equation. With 
the aid of this probability density function, the superposition principle is justified without 
the explicit introduction of a test particle. 
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